Low Rank Tensor Methods in Galerkin-based Isogeometric Analysis

نویسندگان

  • A. Mantzaflaris
  • B. Jüttler
  • B. Khoromskij
  • U. Langer
  • Angelos Mantzaflaris
  • Bert Jüttler
  • Boris N. Khoromskij
  • Ulrich Langer
چکیده

The global (patch-wise) geometry map, which describes the computational domain, is a new feature in isogeometric analysis. This map has a global tensor structure, inherited from the parametric spline geometry representation. The use of this global structure in the discretization of partial differential equations may be regarded as a drawback at first glance, as opposed to the purely local nature of (high-order) classical finite elements. In this work we demonstrate that it is possible to exploit the regularity of this structure and to identify the great potential for the efficient implementation of isogeometric discretizations. First, we formulate tensor-product B-spline bases as well as the corresponding mass and stiffness matrices as tensors in order to reveal their intrinsic structure. Second, we derive an algorithm for the the separation of variables in the integrands arising in the discretization. This is possible by means of low rank approximation of the integral kernels. We arrive at a compact, separated representation of the integrals. The separated form implies an expression of Galerkin matrices as Kronecker products of matrix factors with small dimensions. This representation is very appealing, due to the reduction in both memory consumption and computation times. Our benchmarks, performed using the C++ library G+Smo, demonstrate that the use of tensor methods in isogeometric analysis possesses significant advantages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation

It has been observed that the task of matrix assembly in Isogeometric Analysis (IGA) is more challenging than in the case of traditional finite element methods. The additional difficulties associated with IGA are caused by the increased degree and the larger supports of the functions that occur in the integrals defining the matrix elements. Recently we introduced an interpolation-based approach...

متن کامل

An algorithm for low-rank approximation of bivariate functions using splines

We present an algorithm for the approximation of bivariate functions by “low-rank splines”, that is, sums of outer products of univariate splines. Our approach is motivated by the Adaptive Cross Approximation (ACA) algorithm for low-rank matrix approximation as well as the use of low-rank function approximation in the recent extension of the chebfun package to two dimensions. We show that our p...

متن کامل

Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods

A linear full elliptic second order Partial Differential Equation (PDE), defined on a d-dimensional domain Ω, is approximated by the isogeometric Galerkin method based on uniform tensor-product Bsplines of degrees (p1, . . . , pd). The considered approximation process leads to a d-level stiffness matrix, banded in a multilevel sense. This matrix is close to a d-level Toeplitz structure when the...

متن کامل

A Low-rank Spline Approximation of Planar Domains

Construction of spline surfaces from given boundary curves is one of the classical problems in computer aided geometric design, which regains much attention in isogeometric analysis in recent years and is called domain parameterization. However, for most of the state-of-the-art parameterization methods, the rank of the spline parameterization is usually large, which results in higher computatio...

متن کامل

H2 regularity properties of singular parameterizations in isogeometric analysis

Isogeometric analysis (IGA) is a numerical simulation method which is directly based on the NURBS-based representation of CAD models. It exploits the tensor-product structure of 2- or 3-dimensional NURBS objects to parameterize the physical domain. Hence the physical domain is parameterized with respect to a rectangle or to a cube. Consequently, singularly parameterized NURBS surfaces and NURBS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016